323. The Action of Chlorine upon the 3-Carbethoxy-4-hydroxy-1-nitrophenylpyrazoles.

By F. D. CHATTAWAY and D. R. ASHWORTH.

CHLORINE, when passed into an acetic acid or chloroform solution of any one of the 3-carbethoxy-4-hydroxy-1-nitrophenylpyrazoles (I), converts it into the corresponding 5:5-dichloro-3-carbethoxy-1-nitrophenyl-4-pyrazolone (II). The reaction is a general one and takes place with all the 4-hydroxy-1-nitrophenyl- and the 4-hydroxy-1-monohalogeno-nitrophenyl-3-carbethoxypyrazoles.

It is probable that a 5-chloro-derivative (III) of the 4-hydroxy-pyrazole is first formed,

$$\begin{array}{c} CO_2Et \\ C \underbrace{ \begin{array}{c} CO_2Et \\ CO \underbrace{ \begin{array}{c} CO \underbrace{ \begin{array}{c} CO_2Et \\ CO \underbrace{ \begin{array}{c} CO \underbrace{ \begin{array}{c} CO \underbrace{ \begin{array}{c} CO \underbrace{ \begin{array}{c} CO \underbrace{ \end{array}{c} CO \underbrace{ } CO \underbrace{ \end{array}{c} CO \underbrace{ } CO \underbrace{ \end{array}{c} CO \underbrace{ } CO$$

the equilibrium between the enolic and the keto-form of this being continually disturbed as the latter is further substituted.

Both the 5-bromo- and the 5-chloro-3-carbethoxy-4-hydroxy-1-nitrophenylpyrazoles similarly yield the corresponding 5:5-dichloropyrazolones, the bromine in the former being replaced by chlorine.

In the case of 3-carbethoxy-4-hydroxy-1-(2': 6'-dichloro-4'-nitrophenyl)pyrazole the action does not go beyond the first stage, 5-chloro-3-carbethoxy-4-hydroxy-1-(2': 6'-dichloro-4'-nitrophenyl)pyrazole being the final product.

The 5:5-dichloro-3-carbethoxy-1-nitrophenyl-4-pyrazolones (II) are well-crystallised, comparatively stable compounds. They all react with hydriodic acid in acetic acid solution, iodine being liberated, and 5-chloro-3-carbethoxy-4-hydroxy-1-nitrophenylpyrazoles (III), all of which yield well-crystallised acetyl derivatives, re-formed.

The pyrazole ring in the dichloro-compounds (II) readily opens when they are boiled with alcohol, or dissolved in cold dilute alkali : e.g., the 1-p-nitrophenyl compound (II) in boiling alcohol gives *ethyl diketosuccinate*-p-nitrophenylhydrazone (IV), identical with the compound obtained by coupling p-nitrophenyldiazonium chloride with ethyl oxalacetate; while with cold dilute alkali and subsequent acidification 1-*ethyl* 2-hydrogen diketosuccinate-1-p-nitrophenylhydrazone (V) is obtained, which is readily esterified by cold alcoholic hydrogen chloride to give the same well-crystallised stable diethyl ester (IV).

$$\begin{array}{cccc} & \text{CO}_2\text{Et} & \text{CO}_2\text{$$

These two reactions are quite general; methyl, propyl, and benzyl alcohols react similarly and give mixed esters.

The dialkyl diketosuccinatemononitrophenylhydrazones (IV) react in an interesting way with halogens, the CO·CO₂Alk group being replaced by a halogen atom; *e.g.*, when bromine acts upon ethyl diketosuccinate-*p*-nitrophenylhydrazone in acetic acid containing sodium acetate, ethyl α -bromoglyoxylate-*p*-nitrophenylhydrazone (VI) is formed. The action of chlorine is similar but more vigorous, for besides replacing the CO·CO₂Et group, it enters the nucleus in an ortho-position, ethyl α -chloroglyoxylate-2-chloro-4-nitrophenylhydrazone (VII) being produced.

$$(2)Cl(4)NO_{2} \cdot C_{6}H_{3} \cdot NH \cdot N: C \xrightarrow{CO_{2}Et} CO_{2}Et \xrightarrow{CO_{2}CO_{2}Et} (2)O_{2}Et \xrightarrow{CO_{2}Et} CO_{2}Et \xrightarrow{CO_{2}Et} (2)O_{2}C_{6}H_{4} \cdot NH \cdot N: C \xrightarrow{CO_{2}Et} CO_{2}Et \xrightarrow{CO_{2}Et} (2)O_{2}C_{6}H_{4} \cdot NH \cdot N: C \xrightarrow{CO_{2}Et} CO_{2}Et \xrightarrow{CO_{2}Et} (2)O_{2}Et \xrightarrow{CO_{2}E} (2)O_{2}ET$$

The carbonyl group in the dialkyl diketosuccinatemononitrophenylhydrazones is very reactive and condenses readily with arylhydrazines and with hydroxylamine : e.g., when ethyl diketosuccinate-p-nitrophenylhydrazone (IV) is treated with p-nitrophenylhydrazine, an osazone (VIII) is formed; this in boiling pyridine loses alcohol to form ethyl 4: 5-diketo-1-(4'-nitrophenyl)pyrazolone-3-carboxylate-4-(4''-nitrophenylhydrazone) (IX), identical with that obtained from dihydroxytartaric acid and p-nitrophenylhydrazine, with subsequent ring closure and esterification (compare Chattaway and Humphrey, J., 1927, 2794):

With hydroxylamine, ethyl diketosuccinate-oximino-p-nitrophenylhydrazone (X) is formed, which on heating with sodium acetate in acetic acid solution readily loses alcohol, ring closure takes place, and 3-carbethoxy-4-ketoisooxazolone-4-p-nitrophenylhydrazone (XI) is formed :

$$(IV) \longrightarrow \underbrace{EtO_2C \cdot C: N \cdot NHR}_{EtO_2C \cdot C: NOH} \longrightarrow O \underbrace{\underset{(X.)}{N=C \cdot CO_2Et}} O \underbrace{N=C \cdot CO_2Et}_{CO-C: N \cdot NHR}$$

1-Ethyl 2-hydrogen diketosuccinate-1-p-nitrophenylhydrazone (V) is a well-crystalline stable substance. When heated with acetic anhydride, it loses water, and ring closure follows, with the formation of 3-carbethoxy-4:5-diketo-1-p-nitrophenylpyrazolone (XII), which on addition of water to the acetic acid solution separates as the colourless mono-hydrate (XIII) (compare Sachs and Borschall, Ber., 1902, **35**, 1437):

The molecule of water in this hydrate is firmly held, and is only removed very slowly in a vacuum over phosphoric oxide. The anhydrous form is a highly coloured, reddish solid, which cannot be crystallised in a pure state, even from an anhydrous solvent, owing to the ease with which it takes up water, from the air, to re-form the colourless hydrate.

The 4-keto-group in (XII) is very reactive and condenses readily with p-nitrophenylhydrazine, yielding ethyl 4:5-diketo-1-(4'-nitrophenyl)pyrazolone-3-carboxylate-4-(4''nitrophenylhydrazone) (IX). It also condenses with hydroxylamine, yielding 4-oximino-3-carbethoxy-1-p-nitrophenyl-5-pyrazolone (XIV).

When 3-carbethoxy-4: 5-diketo-1-p-nitrophenylpyrazolone (XII) is heated with alcohol or water, ethyl diketosuccinate-p-nitrophenylhydrazone (IV) and 1-ethyl 2-hydrogen diketosuccinate-1-p-nitrophenylhydrazone (V) are respectively obtained. As these are the compounds produced when the ring in 5:5-dichloro-3-carbethoxy-1-p-nitrophenyl-4pyrazolone is opened with alcohol and alkali respectively, it seems that in the latter reactions the replacement of the two chlorine atoms by oxygen precedes the opening of the ring.

EXPERIMENTAL.

5: 5-Dichloro-3-carbethoxy-1-p-nitrophenyl-4-pyrazolone (II).—2 G. of 3-carbethoxy-4-hydroxy-1-p-nitrophenylpyrazole were suspended in 20 c.c. of chloroform, and chlorine rapidly passed in. Heat was given out and a clear red solution formed. After evaporation of the solvent, the *dichloro*-compound was crystallised from chloroform-light petroleum, forming orange, long, slender, four-sided prisms, m. p. 131° (Found : Cl, 20.6. $C_{12}H_9O_5N_3Cl_3$ requires Cl, 20.5%).

In a similar manner the following have been prepared and crystallised: 5:5-dichloro-3carbethoxy-1-(2'-chloro-4'-nitrophenyl)-4-pyrazolone, pale yellow, dense, rectangular prisms, m. p. 87° (Found: Cl, 28.0. $C_{12}H_8O_5N_3Cl_3$ requires Cl, 28.0%), and the corresponding 1-onitrophenyl compound, deep yellow, compact, irregular prisms, m. p. 98° (Found: Cl, 20.65%), and 1-m-nitrophenyl compound, yellow, long, slender, flattened, four-sided prisms, m. p. 135° (Found: Cl, 20.65%).

5-Chloro-3-carbethoxy-4-hydroxy-1-p-nitrophenylpyrazole (III).—A solution of 2 g. of 5:5dichloro-3-carbethoxy-1-p-nitrophenyl-4-pyrazolone in 20 c.c. of warm acetic acid was added to one of 2 g. of potassium iodide in 10 c.c. of water and 10 c.c. of acetic acid. Iodine was set free at once, and after $\frac{1}{4}$ hour cautious addition of water precipitated 5-chloro-3-carbethoxy-4hydroxy-1-p-nitrophenylpyrazole, which crystallised from alcohol in colourless, long, compact, four-sided prisms, m. p. 146° (Found : Cl, 11.6. $C_{12}H_{10}O_5N_3Cl$ requires Cl, 11.3%). Its acetyl derivative, made by warming it with acetic anhydride containing a drop of sulphuric acid, crystallised from alcohol in colourless, long, slender prisms, m. p. 121.5° (Found : Cl, 10.2. $C_{14}H_{12}O_6N_3Cl$ requires Cl, 10.0%).

In a similar manner the following have been prepared : 5-chloro-3-carbethoxy-4-hydroxy-1-(2'-chloro-4'-nitrophenyl)pyrazole, colourless, long, slender needles from alcohol, m. p. 191° (Found : Cl, 20.45. C₁₂H₉O₆N₃Cl₂ requires Cl, 20.5%), and the corresponding 1-o-nitrophenyl compound, colourless, long, slender, four-sided prisms from benzene, m. p. 142° (Found : Cl, 11.6%), and 1-m-nitrophenyl compound, colourless, irregular, compact prisms from alcohol, m. p. 109° (Found : Cl, 11.5%).

Ethyl Diketosuccinate-p-nitrophenylhydrazone (IV).—(I) 2 G. of 5:5-dichloro-3-carbethoxy-1-p-nitrophenyl-4-pyrazolone were heated for a few minutes with 15 c.c. of ethyl alcohol. Hydrogen chloride was evolved and ethyl diketosuccinate-p-nitrophenylhydrazone separated. It crystallised from alcohol in pale yellow, long, flattened, obliquely truncated, four-sided prisms, m. p. 125° (Found: C, 50·1; H, 4·2; N, 12·5. $C_{14}H_{15}O_7N_3$ requires C, 49·8; H, 4·4; N, 12·5%).

(II) 3 G. of p-nitroaniline (1 mol.) were diazotised with 1.5 g. of sodium nitrite (1 mol.) in 20 c.c. of concentrated hydrochloric acid, and the filtered solution slowly run into a well-stirred cooled mixture of 5 g. of ethyl oxalacetate (1 mol. + excess) and 30 g. of sodium acetate in 200 c.c. of water. The pasty yellow solid obtained, after crystallisation from alcohol, was identical with the above compound.

In a similar manner to (I) above the following have been prepared by using the appropriate alcohol and 5:5-dichloro-4-pyrazolone: 1-ethyl 2-methyl diketosuccinate-1-p-nitrophenylhydrazone, deep yellow, long, flattened prisms, with domed ends, from alcohol, m. p. 138° (Found : N, 12.9. C₁₃H₁₃O₇N₃ requires N, 13.0%); 1-ethyl 2-n-propyl diketosuccinate-1-p-nitrophenylhydrazone, pale yellow, long, slender, flattened prisms from alcohol-light petroleum, m. p. 92° (Found: N, 12.1. C₁₅H₁₇O₇N₃ requires N, 12.0%); 1-ethyl 2-benzyl diketosuccinate-1-pnitrophenylhydrazone, pale yellow, long, slender prisms from alcohol, m. p. 147° (Found : N, 10.7. C19H12O2N3 requires N, 10.5%); 1-ethyl 2-methyl diketosuccinate-1-(2'-chloro-4'-nitrophenylhydrazone), yellow, flattened, irregular prisms from alcohol, m. p. 115° (Found : Cl, 9.9. C₁₃H₁₂O₇N₃Cl requires Cl, 9.9%); 1-ethyl 2-methyl diketosuccinate-1-(2'-bromo-4'-nitrophenylhydrazone), yellow, very slender prisms from alcohol, m. p. 126° (Found : Br, 19.6. C₁₃H₁₂O₇N₃Br requires Br, 19.9%); 1-ethyl 2-methyl diketosuccinate-1-o-nitrophenylhydrazone, yellow, long, somewhat flattened prisms from alcohol, m. p. 116° (Found : N, 13.1%); ethyl diketosuccinatem-nitrophenylhydrazone, yellow, compact prisms from alcohol, m. p. 84° (Found : N, 12.4%); 1-ethyl 2-methyl diketosuccinate-1-m-nitrophenylhydrazone, pale yellow, long, slender, flattened, four-sided prisms from alcohol, m. p. 105° (Found : N, 13.1%).

Action of Chlorine upon 3-Carbethoxy-4-hydroxy-1-(2': 6'-dichloro-4'-nitrophenyl)pyrazole. Chlorine was passed for 10 minutes through a solution of 1 g. of the pyrazole in 25 c.c. of chloro-form. 5-Chloro-3-carbethoxy-4-hydroxy-1-(2': 6'-dichloro-4'-nitrophenyl)pyrazole, obtained by evaporating the solvent on a water-bath, crystallised from alcohol in colourless irregular plates, m. p. 200° (Found : Cl, 27.8. $C_{12}H_8O_5N_3Cl_3$ requires Cl, 28.0%).

Ethyl Diketosuccinate-p-nitrophenylosazone (VIII).—2 G. of ethyl diketosuccinate-p-nitrophenylhydrazone were dissolved in boiling alcohol, and 1 g. of p-nitrophenylhydrazine added. The osazone, which separated, crystallised from alcohol in clusters of yellow, hair-like needles, m. p. 190° (Found : N, 17.55. $C_{20}H_{20}O_8N_6$ requires N, 17.8%).

When the osazone (1 g.) was heated with 10 c.c. of pyridine, a clear solution was first formed. Ethyl 4: 5-diketo-1-(4'-nitrophenyl)pyrazolone-3-carboxylate-4-(4''-nitrophenylhydrazone), which separated on further heating, crystallised from pyridine in clusters of deep yellow, hair-like needles, m. p. 257° (decomp.) (Found: N, 19.55. $C_{18}H_{14}O_7N_6$ requires N, 19.7%). This compound (1) separated gradually when 2.2 g. of sodium dihydroxytartrate (1 mol.) were added to 75 c.c. of alcohol saturated with hydrogen chloride and containing 2.4 g. of p-nitrophenylhydrazine (2 mols.) and the whole was heated in a sealed tube at 100° for 24 hours, (2) separated almost immediately when 1 g. of 1-ethyl 2-hydrogen diketosuccinate-p-nitrophenylhydrazone, dissolved in 10 c.c. of alcohol, was added to a boiling alcoholic solution of 0.5 g. of p-nitrophenylhydrazine containing 1 g. of anhydrous sodium acetate, and (3) separated at once when 0.25 g. of p-nitrophenylhydrazine and 0.5 g. of anhydrous sodium acetate were added to a boiling solution of 0.5 g. of 3-carbethoxy-4: 5-diketo-1-p-nitrophenylpyrazolone hydrate in 10 c.c. of acetic acid.

Ethyl Diketosuccinate-oximino-p-nitrophenylhydrazone (X).—1 G. of ethyl diketosuccinatep-nitrophenylhydrazone and 0.25 g. of hydroxylamine hydrochloride were heated together in 20 c.c. of alcohol for 5 minutes. The oximino-derivative, which separated over-night, crystallised from alcohol in pale yellow, slender prisms, m. p. 163° (decomp.) (Found : N, 16.0. $C_{14}H_{16}O_7N_4$ requires N, 15.9%).

When the oximino-derivative was treated with sodium acetate in acetic acid, 3-carbethoxy-4ketoisooxazolone-4-p-nitrophenylhydrazone (XI) was formed. This compound was also obtained when 1 g. of ethyl diketosuccinate-p-nitrophenylhydrazone, 0.25 g. of hydroxylamine, and 1 g. of fused sodium acetate were heated to 100° in 25 c.c. of acetic acid, and water was added to the cooled product. It crystallised from alcohol in yellow, long, slender needles, m. p. 186° (decomp.) (Found : N, 18.3. $C_{12}H_{10}O_6N_4$ requires N, 18.3%). Action of Bromine and of Chlorine upon Ethyl Diketosuccinate-p-nitrophenylhydrazone.— Bromine (0.2 c.c.) was added to a boiling solution of 1 g. of the hydrazone and 1 g. of fused sodium acetate in 20 c.c. of acetic acid. On addition of water, ethyl α -bromoglyoxylate-*p*nitrophenylhydrazone separated; after crystallisation it was identical with an authentic specimen (see Chattaway and Ashworth, this vol., p. 475).

Ethyl α -chloroglyoxylate-2-chloro-4-nitrophenylhydrazone, similarly obtained after chlorine had been passed for 10 minutes through a solution of 1 g. of the hydrazone in 20 c.c. of acetic acid, was also identical with an authentic specimen (Chattaway and Ashworth, *loc. cit.*).

Action of Dilute Alkali upon 5: 5-Dichloro-3-carbethoxy-1-p-nitrophenyl-4-pyrazolone.—2 G. of the finely powdered pyrazolone were shaken with 2 g. of sodium hydroxide in 500 c.c. of water and after $\frac{1}{2}$ hour the resulting solution was acidified with dilute hydrochloric acid. 1-Ethyl 2-hydrogen diketosuccinate-p-nitrophenylhydrazone, which separated, crystallised from benzene in yellow, short, compact prisms, m. p. 141° (Found : N, 13.3. C₁₂H₁₁O₇N₃ requires N, 13.6%).

When the ethyl hydrogen or the diethyl ester (1 g.) was boiled for $\frac{3}{4}$ hour with 10 c.c. of alcohol and 20 c.c. of concentrated hydrochloric acid, *diketosuccinic anhydride* p-nitrophenyl-hydrazone separated as a spongy mass. It crystallised from acetic acid in orange hair-like needles, m. p. 243° (decomp.) (Found : N, 16·1. C₁₀H₅O₆N₃ requires N, 16·0%).

Action of Acetic Anhydride upon 1-Ethyl 2-Hydrogen Diketosuccinate-p-nitrophenylhydrazone. —A solution of 2 g. of the ethyl hydrogen ester in 15 c.c. of acetic anhydride was heated to boiling and cooled, and water cautiously added. 3-Carbethoxy-4: 5-diketo-1-p-nitrophenylpyrazolone hydrate separated in colourless crystals. Recrystallised from chloroform-light petroleum, it formed long, slender, four-sided prisms, m. p. 95—105° (very indefinite) (Found : N, 13·3. $C_{12}H_9O_6N_3, H_2O$ requires N, 13·6%). The hydrate lost the molecule of water after being kept for a week in a vacuum over phosphoric oxide, and 3-carbethoxy-4: 5-diketo-1-pnitrophenylpyrazolone remained as a red microcrystalline powder, m. p. 152° (Found : loss, 6·4. Calc., 5·8%).

4-Oximino-3-carbethoxy-1-p-nitrophenyl-5-pyrazolone (XIV).—When 2 g. of 3-carbethoxy-4:5-diketo-1-p-nitrophenylpyrazolone hydrate and 0.6 g. of hydroxylamine hydrochloride were gently warmed together in 20 c.c. of acetic acid, the oximino-compound separated. It crystallised from acetic acid in yellow, small, irregular plates decomposing above 222° (Found: N, 18.2. $C_{12}H_{10}O_6N_4$ requires N, 18.3%)

This compound was also obtained by the action under similar conditions of excess of hydroxylamine hydrochloride upon 5:5-dichloro-3-carbethoxy-1-(p-nitrophenyl)-4-pyrazolone.

THE QUEEN'S COLLEGE LABORATORY, OXFORD.

[Received, August 5th, 1933.]